Nuprl Lemma : remove-first-member-implies

[T:Type]. ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹. ∀x:T.  ((x ∈ remove-first(P;L))  (x ∈ L))


Proof




Definitions occuring in Statement :  remove-first: remove-first(P;L) l_member: (x ∈ l) list: List bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] remove-first: remove-first(P;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q and: P ∧ Q false: False list_ind: list_ind nil: [] it: rev_implies:  Q or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff subtype_rel: A ⊆B
Lemmas referenced :  list_induction all_wf l_member_wf bool_wf remove-first_wf list_wf list_ind_nil_lemma nil_member nil_wf list_ind_cons_lemma cons_wf cons_member bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert equal_wf eqff_to_assert assert_of_bnot subtype_rel_dep_function subtype_rel_sets subtype_rel_self set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality setEquality cumulativity hypothesis functionExtensionality applyEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality productElimination rename because_Cache inlFormation dependent_set_memberEquality equalityTransitivity equalitySymmetry unionElimination instantiate independent_isectElimination inrFormation setElimination hyp_replacement Error :applyLambdaEquality,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:T.    ((x  \mmember{}  remove-first(P;L))  {}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2016_10_21-AM-10_27_23
Last ObjectModification: 2016_07_12-AM-05_39_43

Theory : list_1


Home Index