Nuprl Lemma : reverse-reverse
∀[L:Top List]. (rev(rev(L)) ~ L)
Proof
Definitions occuring in Statement : 
reverse: rev(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reverse: rev(as)
, 
top: Top
, 
all: ∀x:A. B[x]
Lemmas referenced : 
list_wf, 
top_wf, 
rev_app_nil_lemma, 
append-nil, 
rev-append-rev-append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}[L:Top  List].  (rev(rev(L))  \msim{}  L)
Date html generated:
2016_05_14-PM-01_48_52
Last ObjectModification:
2015_12_26-PM-05_35_46
Theory : list_1
Home
Index