Nuprl Lemma : reverse_append_sq

[as:Top List]. ∀[bs:Top].  (rev(as bs) rev(bs) rev(as))


Proof




Definitions occuring in Statement :  reverse: rev(as) append: as bs list: List uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reverse: rev(as) top: Top append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  rev-append-append top_wf list_wf append_assoc append-nil rev-append_wf nil_wf list_ind_nil_lemma rev-append-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom because_Cache dependent_functionElimination

Latex:
\mforall{}[as:Top  List].  \mforall{}[bs:Top].    (rev(as  @  bs)  \msim{}  rev(bs)  @  rev(as))



Date html generated: 2016_05_14-AM-07_35_24
Last ObjectModification: 2015_12_26-PM-02_11_22

Theory : list_1


Home Index