Nuprl Lemma : reverse_append_sq
∀[as:Top List]. ∀[bs:Top].  (rev(as @ bs) ~ rev(bs) @ rev(as))
Proof
Definitions occuring in Statement : 
reverse: rev(as)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reverse: rev(as)
, 
top: Top
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
rev-append-append, 
top_wf, 
list_wf, 
append_assoc, 
append-nil, 
rev-append_wf, 
nil_wf, 
list_ind_nil_lemma, 
rev-append-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache, 
dependent_functionElimination
Latex:
\mforall{}[as:Top  List].  \mforall{}[bs:Top].    (rev(as  @  bs)  \msim{}  rev(bs)  @  rev(as))
Date html generated:
2016_05_14-AM-07_35_24
Last ObjectModification:
2015_12_26-PM-02_11_22
Theory : list_1
Home
Index