Nuprl Lemma : select-map-index

[f:Top]. ∀[L:Top List]. ∀[i:ℕ||L||].  (map-index(f;L)[i] L[i])


Proof




Definitions occuring in Statement :  map-index: map-index(f;L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] top: Top apply: a natural_number: $n sqequal: t
Definitions unfolded in proof :  map-index: map-index(f;L) uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-}
Lemmas referenced :  select-map-index_aux zero-add int_seg_wf length_wf top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis setElimination rename sqequalAxiom isect_memberEquality because_Cache

Latex:
\mforall{}[f:Top].  \mforall{}[L:Top  List].  \mforall{}[i:\mBbbN{}||L||].    (map-index(f;L)[i]  \msim{}  f  i  L[i])



Date html generated: 2016_05_14-PM-03_13_13
Last ObjectModification: 2015_12_26-PM-01_46_27

Theory : list_1


Home Index