Nuprl Lemma : select-map-index
∀[f:Top]. ∀[L:Top List]. ∀[i:ℕ||L||].  (map-index(f;L)[i] ~ f i L[i])
Proof
Definitions occuring in Statement : 
map-index: map-index(f;L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
map-index: map-index(f;L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
Lemmas referenced : 
select-map-index_aux, 
zero-add, 
int_seg_wf, 
length_wf, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[f:Top].  \mforall{}[L:Top  List].  \mforall{}[i:\mBbbN{}||L||].    (map-index(f;L)[i]  \msim{}  f  i  L[i])
Date html generated:
2016_05_14-PM-03_13_13
Last ObjectModification:
2015_12_26-PM-01_46_27
Theory : list_1
Home
Index