Nuprl Lemma : select-map-index_aux

[f:Top]. ∀[L:Top List]. ∀[i:ℕ||L||]. ∀[x:ℤ].  (map-index_aux(f;L) x[i] (x i) L[i])


Proof




Definitions occuring in Statement :  map-index_aux: map-index_aux(f;L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] top: Top apply: a add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  map-index_aux: map-index_aux(f;L) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k cons: [a b] colength: colength(L) decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf length_wf top_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma list_ind_nil_lemma stuck-spread base_wf int_seg_properties product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma list_ind_cons_lemma list_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot decidable__lt add-is-int-iff false_wf lelt_wf select-cons
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom applyEquality because_Cache unionElimination baseClosed productElimination promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate cumulativity imageElimination equalityElimination pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[f:Top].  \mforall{}[L:Top  List].  \mforall{}[i:\mBbbN{}||L||].  \mforall{}[x:\mBbbZ{}].    (map-index\_aux(f;L)  x[i]  \msim{}  f  (x  +  i)  L[i])



Date html generated: 2017_04_17-AM-08_54_06
Last ObjectModification: 2017_02_27-PM-05_11_48

Theory : list_1


Home Index