Nuprl Lemma : shuffle_wf

[T:Type]. ∀[ps:(T × T) List].  (shuffle(ps) ∈ List)


Proof




Definitions occuring in Statement :  shuffle: shuffle(ps) list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T shuffle: shuffle(ps) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  concat_wf map_wf list_wf cons_wf pi1_wf pi2_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[ps:(T  \mtimes{}  T)  List].    (shuffle(ps)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-03_15_44
Last ObjectModification: 2015_12_26-PM-01_43_53

Theory : list_1


Home Index