Nuprl Lemma : shuffle_wf
∀[T:Type]. ∀[ps:(T × T) List].  (shuffle(ps) ∈ T List)
Proof
Definitions occuring in Statement : 
shuffle: shuffle(ps), 
list: T List, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
shuffle: shuffle(ps), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
concat_wf, 
map_wf, 
list_wf, 
cons_wf, 
pi1_wf, 
pi2_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[ps:(T  \mtimes{}  T)  List].    (shuffle(ps)  \mmember{}  T  List)
 Date html generated: 
2016_05_14-PM-03_15_44
 Last ObjectModification: 
2015_12_26-PM-01_43_53
Theory : list_1
Home
Index