Nuprl Lemma : sub-co-list_wf
∀[T:Type]. ∀[s1,s2:colist(T)].  (sub-co-list(T;s1;s2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
sub-co-list: sub-co-list(T;s1;s2)
, 
colist: colist(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sub-co-list: sub-co-list(T;s1;s2)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
colist_wf, 
nat_wf, 
equal_wf, 
list-at_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[s1,s2:colist(T)].    (sub-co-list(T;s1;s2)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-01_21_56
Last ObjectModification:
2018_12_07-PM-06_31_41
Theory : list_1
Home
Index