Nuprl Lemma : sub-co-list_wf

[T:Type]. ∀[s1,s2:colist(T)].  (sub-co-list(T;s1;s2) ∈ ℙ)


Proof




Definitions occuring in Statement :  sub-co-list: sub-co-list(T;s1;s2) colist: colist(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sub-co-list: sub-co-list(T;s1;s2) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf colist_wf nat_wf equal_wf list-at_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis Error :lambdaEquality_alt,  hypothesisEquality Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s1,s2:colist(T)].    (sub-co-list(T;s1;s2)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_21_56
Last ObjectModification: 2018_12_07-PM-06_31_41

Theory : list_1


Home Index