Nuprl Lemma : subset-map
∀[A,B:Type].  ∀f:A ⟶ B. ∀L1,L2:A List.  (l_subset(A;L1;L2) 
⇒ l_subset(B;map(f;L1);map(f;L2)))
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
l_subset: l_subset(T;as;bs)
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
l_member_wf, 
equal_wf, 
exists_wf, 
all_wf, 
member_map, 
map_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
addLevel, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L1,L2:A  List.    (l\_subset(A;L1;L2)  {}\mRightarrow{}  l\_subset(B;map(f;L1);map(f;L2)))
Date html generated:
2019_06_20-PM-01_33_11
Last ObjectModification:
2018_08_24-PM-10_52_24
Theory : list_1
Home
Index