Nuprl Lemma : subset-map

[A,B:Type].  ∀f:A ⟶ B. ∀L1,L2:A List.  (l_subset(A;L1;L2)  l_subset(B;map(f;L1);map(f;L2)))


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_subset: l_subset(T;as;bs) implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q guard: {T}
Lemmas referenced :  l_member_wf equal_wf exists_wf all_wf member_map map_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality independent_pairFormation hypothesis productEquality introduction extract_by_obid isectElimination applyEquality sqequalRule lambdaEquality functionEquality addLevel independent_functionElimination dependent_functionElimination because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}L1,L2:A  List.    (l\_subset(A;L1;L2)  {}\mRightarrow{}  l\_subset(B;map(f;L1);map(f;L2)))



Date html generated: 2019_06_20-PM-01_33_11
Last ObjectModification: 2018_08_24-PM-10_52_24

Theory : list_1


Home Index