Nuprl Lemma : trivial-biject-exists

[T:Type]. ∃f:T ⟶ T. Bij(T;T;f)


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) uall: [x:A]. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  biject_wf id-biject
Rules used in proof :  universeEquality applyEquality functionExtensionality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut cumulativity hypothesisEquality lambdaEquality dependent_pairFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mexists{}f:T  {}\mrightarrow{}  T.  Bij(T;T;f)



Date html generated: 2017_09_29-PM-05_58_04
Last ObjectModification: 2017_09_04-PM-00_13_50

Theory : list_1


Home Index