Nuprl Lemma : trivial-biject-exists
∀[T:Type]. ∃f:T ⟶ T. Bij(T;T;f)
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
biject_wf, 
id-biject
Rules used in proof : 
universeEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
dependent_pairFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mexists{}f:T  {}\mrightarrow{}  T.  Bij(T;T;f)
Date html generated:
2017_09_29-PM-05_58_04
Last ObjectModification:
2017_09_04-PM-00_13_50
Theory : list_1
Home
Index