Nuprl Lemma : upto_add_1

[n:ℕ]. (upto(n 1) upto(n) [n])


Proof




Definitions occuring in Statement :  upto: upto(n) append: as bs cons: [a b] nil: [] nat: uall: [x:A]. B[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + nat: le: A ≤ B and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True
Lemmas referenced :  upto_decomp1 decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf nat_wf add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality productElimination dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination independent_functionElimination independent_isectElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality sqequalAxiom

Latex:
\mforall{}[n:\mBbbN{}].  (upto(n  +  1)  \msim{}  upto(n)  @  [n])



Date html generated: 2016_05_14-PM-02_04_06
Last ObjectModification: 2015_12_26-PM-05_10_06

Theory : list_1


Home Index