Nuprl Lemma : zip_unzip
∀[T1,T2:Type]. ∀[as:(T1 × T2) List].  (zip(fst(unzip(as));snd(unzip(as))) = as ∈ ((T1 × T2) List))
Proof
Definitions occuring in Statement : 
unzip: unzip(as)
, 
zip: zip(as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
unzip: unzip(as)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
top: Top
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
list_induction, 
equal_wf, 
list_wf, 
zip_wf, 
map_wf, 
pi1_wf, 
pi2_wf, 
map_nil_lemma, 
zip_nil_lemma, 
nil_wf, 
map_cons_lemma, 
zip_cons_cons_lemma, 
cons_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
independent_pairEquality, 
productElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
axiomEquality, 
universeEquality, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[as:(T1  \mtimes{}  T2)  List].    (zip(fst(unzip(as));snd(unzip(as)))  =  as)
Date html generated:
2017_04_17-AM-08_55_36
Last ObjectModification:
2017_02_27-PM-05_10_23
Theory : list_1
Home
Index