Nuprl Lemma : EquatePairs-equality
∀[x,y,n,m:Base].
(∀a,b:Base.
(a = b ∈ EquatePairs(x;n;y;m)
⇐⇒ ↓(a = b ∈ Base)
∨ (((x = a ∈ Base) ∧ (n = b ∈ Base)) ∨ ((x = b ∈ Base) ∧ (n = a ∈ Base)))
∨ (((y = a ∈ Base) ∧ (m = b ∈ Base)) ∨ ((y = b ∈ Base) ∧ (m = a ∈ Base)))
∨ ((x = y ∈ Base) ∧ (((n = a ∈ Base) ∧ (m = b ∈ Base)) ∨ ((n = b ∈ Base) ∧ (m = a ∈ Base)))))) supposing
((¬(n = m ∈ Base)) and
(¬(x = m ∈ Base)) and
(¬(y = n ∈ Base)))
Proof
Definitions occuring in Statement :
EquatePairs: EquatePairs(x;n;y;m)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
,
squash: ↓T
,
or: P ∨ Q
,
and: P ∧ Q
,
base: Base
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
squash: ↓T
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
EquatePairs: EquatePairs(x;n;y;m)
,
so_lambda: λ2x y.t[x; y]
Lemmas referenced :
equal-wf-base,
EquatePairs_wf,
squash_wf,
or_wf,
base_wf,
not_wf,
equal_wf,
and_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
independent_pairFormation,
hypothesis,
sqequalHypSubstitution,
imageElimination,
sqequalRule,
imageMemberEquality,
hypothesisEquality,
thin,
baseClosed,
extract_by_obid,
isectElimination,
independent_isectElimination,
because_Cache,
productEquality,
lambdaEquality,
dependent_functionElimination,
productElimination,
independent_pairEquality,
axiomEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
pertypeElimination,
lemma_by_obid,
pertypeMemberEquality
Latex:
\mforall{}[x,y,n,m:Base].
(\mforall{}a,b:Base.
(a = b
\mLeftarrow{}{}\mRightarrow{} \mdownarrow{}(a = b)
\mvee{} (((x = a) \mwedge{} (n = b)) \mvee{} ((x = b) \mwedge{} (n = a)))
\mvee{} (((y = a) \mwedge{} (m = b)) \mvee{} ((y = b) \mwedge{} (m = a)))
\mvee{} ((x = y) \mwedge{} (((n = a) \mwedge{} (m = b)) \mvee{} ((n = b) \mwedge{} (m = a)))))) supposing
((\mneg{}(n = m)) and
(\mneg{}(x = m)) and
(\mneg{}(y = n)))
Date html generated:
2018_05_21-PM-01_12_44
Last ObjectModification:
2018_05_01-PM-04_53_41
Theory : num_thy_1
Home
Index