Nuprl Lemma : divides_instance
3 | 6
Proof
Definitions occuring in Statement : 
divides: b | a, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
decidable__divides_ext, 
btrue: tt, 
true: True
Lemmas referenced : 
decidable__divides_ext, 
subtype_rel_self, 
all_wf, 
decidable_wf, 
divides_wf, 
outl_wf, 
not_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
applyEquality, 
instantiate, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalRule, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
natural_numberEquality, 
applyLambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
3  |  6
Date html generated:
2018_05_21-PM-00_54_08
Last ObjectModification:
2018_05_19-AM-06_33_48
Theory : num_thy_1
Home
Index