Step
*
1
1
of Lemma
eqmod-by-orbits
.....assertion.....
1. n : ℕ
2. k : ℕ
3. p : ℕ
4. T : Type
5. f : T ⟶ T
6. T ~ ℕn
7. Inj(T;T;f)
8. {x:T| (f x) = x ∈ T} ~ ℕk
9. orbits : T List List
10. (∀o∈orbits.orbit(T;f;o))
11. ∀a:T. (∃o∈orbits. (a ∈ o))
12. (∀o1,o2∈orbits. l_disjoint(T;o1;o2))
13. no_repeats(T List;orbits)
14. n = l_sum(map(λo.||o||;orbits)) ∈ ℤ
15. (∀orbit∈orbits.(||orbit|| = 1 ∈ ℤ) ∨ (p | ||orbit||))
⊢ l_sum(map(λo.||o||;orbits)) ≡ ||filter(λo.(||o|| =z 1);orbits)|| mod p
BY
{ (MoveToConcl (-1) THEN All Thin THEN ListInd (-1) THEN Unfold `l_sum` 0 THEN Reduce 0 THEN Try (Fold `l_sum` 0)) }
1
1. p : ℕ
2. T : Type
⊢ (∀orbit∈[].(||orbit|| = 1 ∈ ℤ) ∨ (p | ||orbit||))
⇒ (0 ≡ 0 mod p)
2
1. p : ℕ
2. T : Type
3. u : T List
4. v : T List List
5. (∀orbit∈v.(||orbit|| = 1 ∈ ℤ) ∨ (p | ||orbit||))
⇒ (l_sum(map(λo.||o||;v)) ≡ ||filter(λo.(||o|| =z 1);v)|| mod p)
⊢ (∀orbit∈[u / v].(||orbit|| = 1 ∈ ℤ) ∨ (p | ||orbit||))
⇒ ((||u|| + l_sum(map(λo.||o||;v))) ≡ ||if (||u|| =z 1)
then [u / filter(λo.(||o|| =z 1);v)]
else filter(λo.(||o|| =z 1);v)
fi || mod p)
Latex:
Latex:
.....assertion.....
1. n : \mBbbN{}
2. k : \mBbbN{}
3. p : \mBbbN{}
4. T : Type
5. f : T {}\mrightarrow{} T
6. T \msim{} \mBbbN{}n
7. Inj(T;T;f)
8. \{x:T| (f x) = x\} \msim{} \mBbbN{}k
9. orbits : T List List
10. (\mforall{}o\mmember{}orbits.orbit(T;f;o))
11. \mforall{}a:T. (\mexists{}o\mmember{}orbits. (a \mmember{} o))
12. (\mforall{}o1,o2\mmember{}orbits. l\_disjoint(T;o1;o2))
13. no\_repeats(T List;orbits)
14. n = l\_sum(map(\mlambda{}o.||o||;orbits))
15. (\mforall{}orbit\mmember{}orbits.(||orbit|| = 1) \mvee{} (p | ||orbit||))
\mvdash{} l\_sum(map(\mlambda{}o.||o||;orbits)) \mequiv{} ||filter(\mlambda{}o.(||o|| =\msubz{} 1);orbits)|| mod p
By
Latex:
(MoveToConcl (-1)
THEN All Thin
THEN ListInd (-1)
THEN Unfold `l\_sum` 0
THEN Reduce 0
THEN Try (Fold `l\_sum` 0))
Home
Index