Nuprl Lemma : eqmod-divides-implies

m,m':ℤ.  ((m' m)  {∀a,b:ℤ.  ((a ≡ mod m)  (a ≡ mod m'))})


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m divides: a guard: {T} all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T prop: uall: [x:A]. B[x] eqmod: a ≡ mod m divides: a exists: x:A. B[x] uimplies: supposing a sq_type: SQType(T) squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  eqmod_wf divides_wf subtype_base_sq int_subtype_base equal_wf squash_wf true_wf mul_assoc iff_weakening_equal equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache intEquality productElimination promote_hyp instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality lambdaEquality imageElimination universeEquality equalityUniverse levelHypothesis natural_numberEquality sqequalRule imageMemberEquality baseClosed dependent_pairFormation multiplyEquality baseApply closedConclusion

Latex:
\mforall{}m,m':\mBbbZ{}.    ((m'  |  m)  {}\mRightarrow{}  \{\mforall{}a,b:\mBbbZ{}.    ((a  \mequiv{}  b  mod  m)  {}\mRightarrow{}  (a  \mequiv{}  b  mod  m'))\})



Date html generated: 2017_04_17-AM-09_42_52
Last ObjectModification: 2017_02_27-PM-05_37_26

Theory : num_thy_1


Home Index