Step
*
1
2
of Lemma
fast-fib
1. n : ℕ
2. ∀n1:ℕn. ∀a,b:ℤ.
(∃c:ℤ [(∀m:ℕ
((a = fib(m + 1) ∈ ℤ)
⇒ (b = fib(m) ∈ ℤ)
⇒ (c = if 0 ≤z n1 then fib(n1 + m) else fib(m) fi ∈ ℤ)))])
3. a : ℤ
4. b : ℤ
5. ¬(n = 0 ∈ ℤ)
⊢ ∃c:ℤ [(∀m:ℕ. ((a = fib(m + 1) ∈ ℤ)
⇒ (b = fib(m) ∈ ℤ)
⇒ (c = if 0 ≤z n then fib(n + m) else fib(m) fi ∈ ℤ)))]
BY
{ (((Evaluate ⌜s = (a + b) ∈ ℤ⌝⋅ THENM (Evaluate ⌜n' = (n - 1) ∈ ℤ⌝⋅ THENM InstHyp [⌜n'⌝;⌜s⌝;⌜a⌝] 2⋅)) THENA Auto)
THEN (ParallelLast THENA Auto')
)⋅ }
1
1. n : ℕ
2. ∀n1:ℕn. ∀a,b:ℤ.
(∃c:ℤ [(∀m:ℕ
((a = fib(m + 1) ∈ ℤ)
⇒ (b = fib(m) ∈ ℤ)
⇒ (c = if 0 ≤z n1 then fib(n1 + m) else fib(m) fi ∈ ℤ)))])
3. a : ℤ
4. b : ℤ
5. ¬(n = 0 ∈ ℤ)
6. s : ℤ
7. s = (a + b) ∈ ℤ
8. n' : ℤ
9. n' = (n - 1) ∈ ℤ
10. c : ℤ
11. ∀m:ℕ. ((s = fib(m + 1) ∈ ℤ)
⇒ (a = fib(m) ∈ ℤ)
⇒ (c = if 0 ≤z n' then fib(n' + m) else fib(m) fi ∈ ℤ))
12. m : ℕ
13. a = fib(m + 1) ∈ ℤ
14. b = fib(m) ∈ ℤ
⊢ c = if 0 ≤z n then fib(n + m) else fib(m) fi ∈ ℤ
Latex:
Latex:
1. n : \mBbbN{}
2. \mforall{}n1:\mBbbN{}n. \mforall{}a,b:\mBbbZ{}.
(\mexists{}c:\mBbbZ{} [(\mforall{}m:\mBbbN{}
((a = fib(m + 1))
{}\mRightarrow{} (b = fib(m))
{}\mRightarrow{} (c = if 0 \mleq{}z n1 then fib(n1 + m) else fib(m) fi )))])
3. a : \mBbbZ{}
4. b : \mBbbZ{}
5. \mneg{}(n = 0)
\mvdash{} \mexists{}c:\mBbbZ{}
[(\mforall{}m:\mBbbN{}. ((a = fib(m + 1)) {}\mRightarrow{} (b = fib(m)) {}\mRightarrow{} (c = if 0 \mleq{}z n then fib(n + m) else fib(m) fi )))]
By
Latex:
(((Evaluate \mkleeneopen{}s = (a + b)\mkleeneclose{}\mcdot{} THENM (Evaluate \mkleeneopen{}n' = (n - 1)\mkleeneclose{}\mcdot{} THENM InstHyp [\mkleeneopen{}n'\mkleeneclose{};\mkleeneopen{}s\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}] 2\mcdot{}))
THENA Auto
)
THEN (ParallelLast THENA Auto')
)\mcdot{}
Home
Index