Nuprl Lemma : gcd_is_divisor_2
∀a,b:ℤ.  (gcd(a;b) | b)
Proof
Definitions occuring in Statement : 
divides: b | a
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
gcd_p: GCD(a;b;y)
, 
and: P ∧ Q
Lemmas referenced : 
istype-int, 
gcd_wf, 
gcd_sat_pred, 
gcd_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :inhabitedIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
isectElimination, 
Error :equalityIsType1, 
equalityTransitivity, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}a,b:\mBbbZ{}.    (gcd(a;b)  |  b)
Date html generated:
2019_06_20-PM-02_22_07
Last ObjectModification:
2018_10_03-AM-00_12_20
Theory : num_thy_1
Home
Index