Nuprl Lemma : gcd_p_neg_arg_a
∀a,b,y:ℤ.  (GCD(a;b;y) 
⇒ GCD(-a;b;y))
Proof
Definitions occuring in Statement : 
gcd_p: GCD(a;b;y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
minus: -n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
gcd_p_wf, 
istype-int, 
gcd_p_sym, 
gcd_p_neg_arg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
minusEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}a,b,y:\mBbbZ{}.    (GCD(a;b;y)  {}\mRightarrow{}  GCD(-a;b;y))
Date html generated:
2019_06_20-PM-02_21_41
Last ObjectModification:
2018_10_03-AM-00_12_13
Theory : num_thy_1
Home
Index