Nuprl Lemma : gcd_p_neg_arg_a

a,b,y:ℤ.  (GCD(a;b;y)  GCD(-a;b;y))


Proof




Definitions occuring in Statement :  gcd_p: GCD(a;b;y) all: x:A. B[x] implies:  Q minus: -n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  gcd_p_wf istype-int gcd_p_sym gcd_p_neg_arg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  minusEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}a,b,y:\mBbbZ{}.    (GCD(a;b;y)  {}\mRightarrow{}  GCD(-a;b;y))



Date html generated: 2019_06_20-PM-02_21_41
Last ObjectModification: 2018_10_03-AM-00_12_13

Theory : num_thy_1


Home Index