Step
*
of Lemma
genfact-unbounded
∀f:ℕ+ ⟶ ℤ. ∀b:ℕ+. ∀N:ℤ. (∃n:ℕ [(N ≤ genfact(n;b;m.f[m]))]) supposing ∀m:ℕ+. 1 < f[m]
BY
{ (Auto THEN (Evaluate ⌜M = N ∈ ℤ⌝⋅ THENA Auto) THEN RevHypSubst' (-1) 0 THEN ThinVar `N' THEN RenameVar `N' (-1)) }
1
1. f : ℕ+ ⟶ ℤ
2. ∀m:ℕ+. 1 < f[m]
3. b : ℕ+
4. N : ℤ
⊢ ∃n:ℕ [(N ≤ genfact(n;b;m.f[m]))]
Latex:
Latex:
\mforall{}f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}. \mforall{}b:\mBbbN{}\msupplus{}. \mforall{}N:\mBbbZ{}. (\mexists{}n:\mBbbN{} [(N \mleq{} genfact(n;b;m.f[m]))]) supposing \mforall{}m:\mBbbN{}\msupplus{}. 1 < f[m]
By
Latex:
(Auto
THEN (Evaluate \mkleeneopen{}M = N\mkleeneclose{}\mcdot{} THENA Auto)
THEN RevHypSubst' (-1) 0
THEN ThinVar `N'
THEN RenameVar `N' (-1))
Home
Index