Step
*
1
2
1
of Lemma
integer-sqrt-xover
1. x : ℕ@i
2. exact-xover(λr.x <z r * r;0)
= exact-xover(λr.x <z r * r;0)
∈ {x1:ℤ| (0 ≤ x1) ∧ (λr.x <z r * r) x1 = ff ∧ (λr.x <z r * r) (x1 + 1) = tt}
3. x1 : ℤ@i
4. (0 ≤ x1) ∧ x <z x1 * x1 = ff ∧ x <z (x1 + 1) * (x1 + 1) = tt
⊢ x1 ∈ ∃r:ℕ [(((r * r) ≤ x) ∧ x < (r + 1) * (r + 1))]
BY
{ TACTIC:((RWO "eqtt_to_assert eqff_to_assert" (-1) THENA Auto) THEN (RW assert_pushdownC (-1) THENA Auto)) }
1
1. x : ℕ@i
2. exact-xover(λr.x <z r * r;0)
= exact-xover(λr.x <z r * r;0)
∈ {x1:ℤ| (0 ≤ x1) ∧ (λr.x <z r * r) x1 = ff ∧ (λr.x <z r * r) (x1 + 1) = tt}
3. x1 : ℤ@i
4. (0 ≤ x1) ∧ (¬x < x1 * x1) ∧ x < (x1 + 1) * (x1 + 1)
⊢ x1 ∈ ∃r:ℕ [(((r * r) ≤ x) ∧ x < (r + 1) * (r + 1))]
Latex:
Latex:
1. x : \mBbbN{}@i
2. exact-xover(\mlambda{}r.x <z r * r;0) = exact-xover(\mlambda{}r.x <z r * r;0)
3. x1 : \mBbbZ{}@i
4. (0 \mleq{} x1) \mwedge{} x <z x1 * x1 = ff \mwedge{} x <z (x1 + 1) * (x1 + 1) = tt
\mvdash{} x1 \mmember{} \mexists{}r:\mBbbN{} [(((r * r) \mleq{} x) \mwedge{} x < (r + 1) * (r + 1))]
By
Latex:
TACTIC:((RWO "eqtt\_to\_assert eqff\_to\_assert" (-1) THENA Auto)
THEN (RW assert\_pushdownC (-1) THENA Auto)
)
Home
Index