Step
*
1
of Lemma
lcm-property
1. x : ℤ
2. y : ℤ
3. a : ℤ
4. b : ℤ
5. CoPrime(a,b) ∧ (x = (gcd(x;y) * a) ∈ ℤ) ∧ (y = (gcd(x;y) * b) ∈ ℤ)
6. gcd(x;y) = 0 ∈ ℤ
⊢ CoPrime(a,b) ∧ ((x * b) = lcm(x;y) ∈ ℤ) ∧ ((y * a) = lcm(x;y) ∈ ℤ)
BY
{ (Unfold `lcm` 0
THEN Eliminate ⌜gcd(x;y)⌝⋅
THEN SplitAndHyps
THEN Eliminate x⋅
THEN Eliminate y⋅
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN AutoSplit) }
Latex:
Latex:
1. x : \mBbbZ{}
2. y : \mBbbZ{}
3. a : \mBbbZ{}
4. b : \mBbbZ{}
5. CoPrime(a,b) \mwedge{} (x = (gcd(x;y) * a)) \mwedge{} (y = (gcd(x;y) * b))
6. gcd(x;y) = 0
\mvdash{} CoPrime(a,b) \mwedge{} ((x * b) = lcm(x;y)) \mwedge{} ((y * a) = lcm(x;y))
By
Latex:
(Unfold `lcm` 0
THEN Eliminate \mkleeneopen{}gcd(x;y)\mkleeneclose{}\mcdot{}
THEN SplitAndHyps
THEN Eliminate x\mcdot{}
THEN Eliminate y\mcdot{}
THEN RepeatFor 2 ((CallByValueReduce 0 THENA Auto))
THEN AutoSplit)
Home
Index