Nuprl Lemma : neg_assoced
∀a:ℤ. ((-a) ~ a)
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
minus: -n
, 
int: ℤ
Definitions unfolded in proof : 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
istype-int, 
divides_reflexivity, 
divides_invar_1, 
divides_invar_2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}a:\mBbbZ{}.  ((-a)  \msim{}  a)
Date html generated:
2019_06_20-PM-02_21_11
Last ObjectModification:
2018_10_03-AM-00_12_04
Theory : num_thy_1
Home
Index