Nuprl Lemma : divides_invar_1

a,b:ℤ.  (a ⇐⇒ (-a) b)


Proof




Definitions occuring in Statement :  divides: a all: x:A. B[x] iff: ⇐⇒ Q minus: -n int:
Definitions unfolded in proof :  divides: a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_minus_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMinus_wf itermMultiply_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int equal_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality multiplyEquality hypothesis minusEquality productElimination dependent_pairFormation dependent_functionElimination because_Cache unionElimination natural_numberEquality independent_isectElimination int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}a,b:\mBbbZ{}.    (a  |  b  \mLeftarrow{}{}\mRightarrow{}  (-a)  |  b)



Date html generated: 2016_05_14-PM-04_15_51
Last ObjectModification: 2016_01_14-PM-11_42_40

Theory : num_thy_1


Home Index