Step
*
1
1
1
of Lemma
odd-l_sum
1. [T] : Type
2. [L] : T List
3. [f] : {x:T| (x ∈ L)} ⟶ ℤ
4. l_sum(map(f;L)) = Σ(f L[i] | i < ||L||) ∈ ℤ
⊢ uiff(↑isOdd(||filter(λi.isOdd(f L[i]);upto(||L||))||);↑isOdd(||filter(λx.isOdd(f x);L)||))
BY
{ Subst' ||filter(λi.isOdd(f L[i]);upto(||L||))|| ~ ||filter(λx.isOdd(f x);L)|| 0 }
1
.....equality.....
1. T : Type
2. L : T List
3. f : {x:T| (x ∈ L)} ⟶ ℤ
4. l_sum(map(f;L)) = Σ(f L[i] | i < ||L||) ∈ ℤ
⊢ ||filter(λi.isOdd(f L[i]);upto(||L||))|| ~ ||filter(λx.isOdd(f x);L)||
2
1. [T] : Type
2. [L] : T List
3. [f] : {x:T| (x ∈ L)} ⟶ ℤ
4. l_sum(map(f;L)) = Σ(f L[i] | i < ||L||) ∈ ℤ
⊢ uiff(↑isOdd(||filter(λx.isOdd(f x);L)||);↑isOdd(||filter(λx.isOdd(f x);L)||))
Latex:
Latex:
1. [T] : Type
2. [L] : T List
3. [f] : \{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbZ{}
4. l\_sum(map(f;L)) = \mSigma{}(f L[i] | i < ||L||)
\mvdash{} uiff(\muparrow{}isOdd(||filter(\mlambda{}i.isOdd(f L[i]);upto(||L||))||);\muparrow{}isOdd(||filter(\mlambda{}x.isOdd(f x);L)||))
By
Latex:
Subst' ||filter(\mlambda{}i.isOdd(f L[i]);upto(||L||))|| \msim{} ||filter(\mlambda{}x.isOdd(f x);L)|| 0
Home
Index