Step
*
1
of Lemma
olympiad-problem-six
1. k : ℤ
2. a : ℕ
3. ∀a:ℕa. ∀b:ℕ. ((((a * a) + (b * b)) = (k * ((a * b) + 1)) ∈ ℤ)
⇒ (∃n:ℤ. (k = (n * n) ∈ ℤ)))
4. b : ℕ
5. ((a * a) + (b * b)) = (k * ((a * b) + 1)) ∈ ℤ
6. ¬b < a
7. a = 0 ∈ ℤ
⊢ ∃n:ℤ. (k = (n * n) ∈ ℤ)
BY
{ (D 0 With ⌜b⌝ THEN Auto THEN Eliminate ⌜a⌝⋅ THEN Auto) }
Latex:
Latex:
1. k : \mBbbZ{}
2. a : \mBbbN{}
3. \mforall{}a:\mBbbN{}a. \mforall{}b:\mBbbN{}. ((((a * a) + (b * b)) = (k * ((a * b) + 1))) {}\mRightarrow{} (\mexists{}n:\mBbbZ{}. (k = (n * n))))
4. b : \mBbbN{}
5. ((a * a) + (b * b)) = (k * ((a * b) + 1))
6. \mneg{}b < a
7. a = 0
\mvdash{} \mexists{}n:\mBbbZ{}. (k = (n * n))
By
Latex:
(D 0 With \mkleeneopen{}b\mkleeneclose{} THEN Auto THEN Eliminate \mkleeneopen{}a\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index