Step
*
of Lemma
polymorphic-choice-int
∀f:⋂A:Type. (A ⟶ A ⟶ A). ((∀x,y:ℤ. ((f x y) = x ∈ ℤ)) ∨ (∀x,y:ℤ. ((f x y) = y ∈ ℤ)))
BY
{ (Auto THEN Assert ⌜∀x,y:Base. (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))⌝⋅) }
1
.....assertion.....
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
⊢ ∀x,y:Base. (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
2
1. f : ⋂A:Type. (A ⟶ A ⟶ A)
2. ∀x,y:Base. (↓((f x y) = x ∈ Base) ∨ ((f x y) = y ∈ Base))
⊢ (∀x,y:ℤ. ((f x y) = x ∈ ℤ)) ∨ (∀x,y:ℤ. ((f x y) = y ∈ ℤ))
Latex:
Latex:
\mforall{}f:\mcap{}A:Type. (A {}\mrightarrow{} A {}\mrightarrow{} A). ((\mforall{}x,y:\mBbbZ{}. ((f x y) = x)) \mvee{} (\mforall{}x,y:\mBbbZ{}. ((f x y) = y)))
By
Latex:
(Auto THEN Assert \mkleeneopen{}\mforall{}x,y:Base. (\mdownarrow{}((f x y) = x) \mvee{} ((f x y) = y))\mkleeneclose{}\mcdot{})
Home
Index