Nuprl Lemma : polymorphic-id-unique-sq
∀f:⋂T:Type. (T ⟶ T). (f ~ λx.x)
Proof
Definitions occuring in Statement : 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
it: ⋅
, 
top: Top
, 
unit: Unit
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
istype-int, 
istype-universe, 
istype-base, 
base_wf, 
equal-wf-base, 
subtype_base_sq, 
set_subtype_base, 
subtype_rel_self, 
has-value_wf_base, 
is-exception_wf, 
unit_wf2, 
it_wf, 
unit_subtype_base, 
equal-unit, 
bottom-sqle, 
istype-void, 
equal-value-type, 
bottom_diverge, 
istype-sqequal
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
callbyvalueApplyCases, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
natural_numberEquality, 
Error :functionIsType, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :lambdaEquality_alt, 
Error :isectIsType, 
instantiate, 
universeEquality, 
Error :universeIsType, 
sqequalRule, 
unionElimination, 
Error :equalityIstype, 
sqequalBase, 
setEquality, 
Error :inhabitedIsType, 
Error :dependent_set_memberEquality_alt, 
setElimination, 
rename, 
cumulativity, 
independent_functionElimination, 
baseClosed, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
sqequalSqle, 
Error :isect_memberEquality_alt, 
voidElimination, 
functionEquality, 
isectEquality, 
pointwiseFunctionality, 
lambdaFormation, 
axiomSqEquality, 
sqequalExtensionalEquality, 
independent_pairFormation, 
imageMemberEquality
Latex:
\mforall{}f:\mcap{}T:Type.  (T  {}\mrightarrow{}  T).  (f  \msim{}  \mlambda{}x.x)
Date html generated:
2019_06_20-PM-02_44_07
Last ObjectModification:
2019_01_28-PM-01_36_44
Theory : num_thy_1
Home
Index