Nuprl Lemma : polymorphic-id-unique-sq

f:⋂T:Type. (T ⟶ T). (f ~ λx.x)


Proof




Definitions occuring in Statement :  all: x:A. B[x] lambda: λx.A[x] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B guard: {T} or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) it: top: Top unit: Unit not: ¬A false: False iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T
Lemmas referenced :  value-type-has-value int-value-type istype-int istype-universe istype-base base_wf equal-wf-base subtype_base_sq set_subtype_base subtype_rel_self has-value_wf_base is-exception_wf unit_wf2 it_wf unit_subtype_base equal-unit bottom-sqle istype-void equal-value-type bottom_diverge istype-sqequal
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  callbyvalueApplyCases introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis applyEquality hypothesisEquality natural_numberEquality Error :functionIsType,  because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry Error :lambdaEquality_alt,  Error :isectIsType,  instantiate universeEquality Error :universeIsType,  sqequalRule unionElimination Error :equalityIstype,  sqequalBase setEquality Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  setElimination rename cumulativity independent_functionElimination baseClosed axiomSqleEquality divergentSqle sqleReflexivity sqequalSqle Error :isect_memberEquality_alt,  voidElimination functionEquality isectEquality pointwiseFunctionality lambdaFormation axiomSqEquality sqequalExtensionalEquality independent_pairFormation imageMemberEquality

Latex:
\mforall{}f:\mcap{}T:Type.  (T  {}\mrightarrow{}  T).  (f  \msim{}  \mlambda{}x.x)



Date html generated: 2019_06_20-PM-02_44_07
Last ObjectModification: 2019_01_28-PM-01_36_44

Theory : num_thy_1


Home Index