Nuprl Lemma : prime-divides-prime

p,q:ℤ.  (prime(p)  prime(q)  (p q)  (p q))


Proof




Definitions occuring in Statement :  prime: prime(a) assoced: b divides: a all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q prime: prime(a) and: P ∧ Q member: t ∈ T or: P ∨ Q not: ¬A false: False prop: uall: [x:A]. B[x]
Lemmas referenced :  divides-prime divides_wf prime_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis unionElimination voidElimination isectElimination intEquality

Latex:
\mforall{}p,q:\mBbbZ{}.    (prime(p)  {}\mRightarrow{}  prime(q)  {}\mRightarrow{}  (p  |  q)  {}\mRightarrow{}  (p  \msim{}  q))



Date html generated: 2016_05_14-PM-04_27_08
Last ObjectModification: 2015_12_26-PM-08_05_29

Theory : num_thy_1


Home Index