Nuprl Lemma : divides-prime
∀p,q:ℤ.  (prime(q) 
⇒ (p | q) 
⇒ ((p ~ q) ∨ (p ~ 1) ∨ (p = 0 ∈ ℤ)))
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
assoced: a ~ b
, 
divides: b | a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
atomic: atomic(a)
, 
and: P ∧ Q
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
guard: {T}
, 
sq_type: SQType(T)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
reducible: reducible(a)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
int_nzero_wf, 
exists_wf, 
not_wf, 
and_wf, 
nequal_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
assoced_transitivity, 
assoced_inversion, 
equal_wf, 
assoced_wf, 
or_wf, 
one-mul, 
mul-commutes, 
assoced_weakening, 
multiply_functionality_wrt_assoced, 
assoced_functionality_wrt_assoced, 
decidable__assoced, 
prime_wf, 
divides_wf, 
prime_imp_atomic
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
intEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
inlFormation, 
instantiate, 
cumulativity, 
promote_hyp, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
computeAll, 
inrFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename
Latex:
\mforall{}p,q:\mBbbZ{}.    (prime(q)  {}\mRightarrow{}  (p  |  q)  {}\mRightarrow{}  ((p  \msim{}  q)  \mvee{}  (p  \msim{}  1)  \mvee{}  (p  =  0)))
Date html generated:
2016_05_14-PM-04_27_05
Last ObjectModification:
2016_01_14-PM-11_36_30
Theory : num_thy_1
Home
Index