Nuprl Lemma : divides-prime

p,q:ℤ.  (prime(q)  (p q)  ((p q) ∨ (p 1) ∨ (p 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  prime: prime(a) assoced: b divides: a all: x:A. B[x] implies:  Q or: P ∨ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a atomic: atomic(a) and: P ∧ Q divides: a exists: x:A. B[x] prop: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q top: Top guard: {T} sq_type: SQType(T) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A reducible: reducible(a) int_nzero: -o nequal: a ≠ b ∈  cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_nzero_wf exists_wf not_wf and_wf nequal_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermConstant_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt int_subtype_base subtype_base_sq decidable__equal_int assoced_transitivity assoced_inversion equal_wf assoced_wf or_wf one-mul mul-commutes assoced_weakening multiply_functionality_wrt_assoced assoced_functionality_wrt_assoced decidable__assoced prime_wf divides_wf prime_imp_atomic
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination intEquality dependent_functionElimination natural_numberEquality unionElimination equalityTransitivity equalitySymmetry multiplyEquality because_Cache independent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule inlFormation instantiate cumulativity promote_hyp dependent_pairFormation lambdaEquality int_eqEquality computeAll inrFormation dependent_set_memberEquality independent_pairFormation setElimination rename

Latex:
\mforall{}p,q:\mBbbZ{}.    (prime(q)  {}\mRightarrow{}  (p  |  q)  {}\mRightarrow{}  ((p  \msim{}  q)  \mvee{}  (p  \msim{}  1)  \mvee{}  (p  =  0)))



Date html generated: 2016_05_14-PM-04_27_05
Last ObjectModification: 2016_01_14-PM-11_36_30

Theory : num_thy_1


Home Index