Nuprl Lemma : assoced_functionality_wrt_assoced

a,b,a',b':ℤ.  ((a a')  (b b')  (a ⇐⇒ a' b'))


Proof




Definitions occuring in Statement :  assoced: b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q guard: {T}
Lemmas referenced :  equiv_rel_self_functionality assoced_wf istype-int assoced_equiv_rel
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin intEquality sqequalRule Error :lambdaEquality_alt,  hypothesisEquality hypothesis Error :inhabitedIsType,  independent_functionElimination

Latex:
\mforall{}a,b,a',b':\mBbbZ{}.    ((a  \msim{}  a')  {}\mRightarrow{}  (b  \msim{}  b')  {}\mRightarrow{}  (a  \msim{}  b  \mLeftarrow{}{}\mRightarrow{}  a'  \msim{}  b'))



Date html generated: 2019_06_20-PM-02_21_04
Last ObjectModification: 2018_10_03-AM-10_23_40

Theory : num_thy_1


Home Index