Nuprl Lemma : assoced_functionality_wrt_assoced
∀a,b,a',b':ℤ.  ((a ~ a') 
⇒ (b ~ b') 
⇒ (a ~ b 
⇐⇒ a' ~ b'))
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
equiv_rel_self_functionality, 
assoced_wf, 
istype-int, 
assoced_equiv_rel
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
independent_functionElimination
Latex:
\mforall{}a,b,a',b':\mBbbZ{}.    ((a  \msim{}  a')  {}\mRightarrow{}  (b  \msim{}  b')  {}\mRightarrow{}  (a  \msim{}  b  \mLeftarrow{}{}\mRightarrow{}  a'  \msim{}  b'))
Date html generated:
2019_06_20-PM-02_21_04
Last ObjectModification:
2018_10_03-AM-10_23_40
Theory : num_thy_1
Home
Index