Nuprl Lemma : assoced_equiv_rel

EquivRel(ℤ;x,y.x y)


Proof




Definitions occuring in Statement :  assoced: b equiv_rel: EquivRel(T;x,y.E[x; y]) int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q symmetrize: Symmetrize(x,y.R[x; y];a;b) assoced: b
Lemmas referenced :  symmetrized_preorder divides_wf istype-int divides_preorder
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin intEquality sqequalRule Error :lambdaEquality_alt,  hypothesisEquality hypothesis Error :inhabitedIsType,  independent_functionElimination

Latex:
EquivRel(\mBbbZ{};x,y.x  \msim{}  y)



Date html generated: 2019_06_20-PM-02_20_48
Last ObjectModification: 2018_10_03-AM-00_35_49

Theory : num_thy_1


Home Index