Nuprl Lemma : equiv_rel_self_functionality

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (EquivRel(T;x,y.R[x;y])  {∀a,a',b,b':T.  (R[a;b]  R[a';b']  (R[a;a'] ⇐⇒ R[b;b']))})


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2y.t[x; y] equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y])
Lemmas referenced :  equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation applyEquality hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesis Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality productElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T;x,y.R[x;y])  {}\mRightarrow{}  \{\mforall{}a,a',b,b':T.    (R[a;b]  {}\mRightarrow{}  R[a';b']  {}\mRightarrow{}  (R[a;a']  \mLeftarrow{}{}\mRightarrow{}  R[b;b']))\})



Date html generated: 2019_06_20-PM-00_29_06
Last ObjectModification: 2018_09_26-AM-11_56_05

Theory : rel_1


Home Index