Step
*
of Lemma
prime-power-divides-product
No Annotations
∀p:ℕ. (prime(p)
⇒ (∀n:ℕ+. ∀x,y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))))
BY
{ (RepeatFor 2 ((D 0 THENA Auto)) THEN InductionOnNat) }
1
.....basecase.....
1. p : ℕ
2. prime(p)
3. n : ℕ+
⊢ ∀x,y:ℤ. ((¬(p | x))
⇒ (p^1 | (x * y))
⇒ (p^1 | y))
2
.....upcase.....
1. p : ℕ
2. prime(p)
3. n : ℤ
4. 0 < n
5. ∀x,y:ℤ. ((¬(p | x))
⇒ (p^n | (x * y))
⇒ (p^n | y))
⊢ ∀x,y:ℤ. ((¬(p | x))
⇒ (p^(n + 1) | (x * y))
⇒ (p^(n + 1) | y))
Latex:
Latex:
No Annotations
\mforall{}p:\mBbbN{}. (prime(p) {}\mRightarrow{} (\mforall{}n:\mBbbN{}\msupplus{}. \mforall{}x,y:\mBbbZ{}. ((\mneg{}(p | x)) {}\mRightarrow{} (p\^{}n | (x * y)) {}\mRightarrow{} (p\^{}n | y))))
By
Latex:
(RepeatFor 2 ((D 0 THENA Auto)) THEN InductionOnNat)
Home
Index