Nuprl Lemma : sign_wf
∀[x:ℤ]. (sign(x) ∈ ℤ)
Proof
Definitions occuring in Statement : 
sign: sign(x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
sign: sign(x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
ifthenelse_wf, 
le_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
intEquality, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbZ{}].  (sign(x)  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_14-PM-04_28_09
Last ObjectModification:
2015_12_26-PM-08_04_47
Theory : num_thy_1
Home
Index