Step
*
2
1
2
of Lemma
small-eqmod
1. m : ℕ+
2. a : ℤ
3. ¬(0 ≤ a)
4. (0 ≥ (a rem m) ) ∧ ((a rem m) > (-m))
5. ¬(((-2) * (a rem m)) ≤ m)
⊢ ∃b:ℤ. (((2 * |b|) ≤ m) ∧ (b ≡ a mod m))
BY
{ ((Assert (2 * |(a rem m) + m|) ≤ m BY (RWO "absval_unfold" 0 THEN Auto)) THEN D 0 With ⌜(a rem m) + m⌝ THEN Auto) }
1
1. m : ℕ+
2. a : ℤ
3. ¬(0 ≤ a)
4. 0 ≥ (a rem m)
5. (a rem m) > (-m)
6. ¬(((-2) * (a rem m)) ≤ m)
7. (2 * |(a rem m) + m|) ≤ m
8. (2 * |(a rem m) + m|) ≤ m
⊢ ((a rem m) + m) ≡ a mod m
Latex:
Latex:
1. m : \mBbbN{}\msupplus{}
2. a : \mBbbZ{}
3. \mneg{}(0 \mleq{} a)
4. (0 \mgeq{} (a rem m) ) \mwedge{} ((a rem m) > (-m))
5. \mneg{}(((-2) * (a rem m)) \mleq{} m)
\mvdash{} \mexists{}b:\mBbbZ{}. (((2 * |b|) \mleq{} m) \mwedge{} (b \mequiv{} a mod m))
By
Latex:
((Assert (2 * |(a rem m) + m|) \mleq{} m BY
(RWO "absval\_unfold" 0 THEN Auto))
THEN D 0 With \mkleeneopen{}(a rem m) + m\mkleeneclose{}
THEN Auto)
Home
Index