Step
*
2
1
of Lemma
sum-of-three-cubes-iff-1
1. k : ℕ
2. a : ℤ
3. b : ℤ
4. c : ℤ
5. 0 ≤ (a + b)
6. (((a * a * a) + (b * b * b)) + (c * c * c)) = k ∈ ℤ
7. (((a + b) = 0 ∈ ℤ) ∧ ((c * c * c) = k ∈ ℤ))
∨ ((¬((a + b) = 0 ∈ ℤ))
∧ ((k - c * c * c rem a + b) = 0 ∈ ℤ)
∧ (((a * a) + ((b * b) - a * b)) = ((k - c * c * c) ÷ a + b) ∈ ℤ))
⊢ ∃d:ℕ
(((a + b) = d ∈ ℤ)
∧ (((d = 0 ∈ ℤ) ∧ ((c * c * c) = k ∈ ℤ))
∨ ((¬(d = 0 ∈ ℤ))
∧ ((k - c * c * c rem d) = 0 ∈ ℤ)
∧ (((a * a) + ((b * b) - a * b)) = ((k - c * c * c) ÷ d) ∈ ℤ))))
BY
{ (D 0 With ⌜a + b⌝ THEN Auto) }
Latex:
Latex:
1. k : \mBbbN{}
2. a : \mBbbZ{}
3. b : \mBbbZ{}
4. c : \mBbbZ{}
5. 0 \mleq{} (a + b)
6. (((a * a * a) + (b * b * b)) + (c * c * c)) = k
7. (((a + b) = 0) \mwedge{} ((c * c * c) = k))
\mvee{} ((\mneg{}((a + b) = 0))
\mwedge{} ((k - c * c * c rem a + b) = 0)
\mwedge{} (((a * a) + ((b * b) - a * b)) = ((k - c * c * c) \mdiv{} a + b)))
\mvdash{} \mexists{}d:\mBbbN{}
(((a + b) = d)
\mwedge{} (((d = 0) \mwedge{} ((c * c * c) = k))
\mvee{} ((\mneg{}(d = 0))
\mwedge{} ((k - c * c * c rem d) = 0)
\mwedge{} (((a * a) + ((b * b) - a * b)) = ((k - c * c * c) \mdiv{} d)))))
By
Latex:
(D 0 With \mkleeneopen{}a + b\mkleeneclose{} THEN Auto)
Home
Index