Step
*
1
1
2
of Lemma
sum-of-three-cubes-iff-2
1. k : ℕ
2. a : ℤ
3. b : ℤ
4. c : ℤ
5. ((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ
6. ¬(0 ≤ (a + b))
⊢ ∃a,b,c:ℤ. ((0 ≤ (a + b)) ∧ (((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ))
BY
{ (Decide ⌜0 ≤ (a + c)⌝⋅ THENA Auto) }
1
1. k : ℕ
2. a : ℤ
3. b : ℤ
4. c : ℤ
5. ((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ
6. ¬(0 ≤ (a + b))
7. 0 ≤ (a + c)
⊢ ∃a,b,c:ℤ. ((0 ≤ (a + b)) ∧ (((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ))
2
1. k : ℕ
2. a : ℤ
3. b : ℤ
4. c : ℤ
5. ((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ
6. ¬(0 ≤ (a + b))
7. ¬(0 ≤ (a + c))
⊢ ∃a,b,c:ℤ. ((0 ≤ (a + b)) ∧ (((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ))
Latex:
Latex:
1. k : \mBbbN{}
2. a : \mBbbZ{}
3. b : \mBbbZ{}
4. c : \mBbbZ{}
5. ((a * a * a) + (b * b * b) + (c * c * c)) = k
6. \mneg{}(0 \mleq{} (a + b))
\mvdash{} \mexists{}a,b,c:\mBbbZ{}. ((0 \mleq{} (a + b)) \mwedge{} (((a * a * a) + (b * b * b) + (c * c * c)) = k))
By
Latex:
(Decide \mkleeneopen{}0 \mleq{} (a + c)\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index