Step
*
1
2
of Lemma
sum-of-three-cubes-iff-2
1. k : ℕ
2. ∃a,b,c:ℤ. (((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ)
3. ∃a,b,c:ℤ. ((0 ≤ (a + b)) ∧ (((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ))
⊢ ∃c:ℤ
(((c * c * c) = k ∈ ℤ)
∨ (∃d:ℕ
((¬(d = 0 ∈ ℤ))
∧ ((k - c * c * c rem d) = 0 ∈ ℤ)
∧ (∃n:ℕ. (((4 * ((k - c * c * c) ÷ d)) - d * d) = (3 * n * n) ∈ ℤ)))))
BY
{ (Thin (-2) THEN ExRepD) }
1
1. k : ℕ
2. a : ℤ
3. b : ℤ
4. c : ℤ
5. 0 ≤ (a + b)
6. ((a * a * a) + (b * b * b) + (c * c * c)) = k ∈ ℤ
⊢ ∃c:ℤ
(((c * c * c) = k ∈ ℤ)
∨ (∃d:ℕ
((¬(d = 0 ∈ ℤ))
∧ ((k - c * c * c rem d) = 0 ∈ ℤ)
∧ (∃n:ℕ. (((4 * ((k - c * c * c) ÷ d)) - d * d) = (3 * n * n) ∈ ℤ)))))
Latex:
Latex:
1. k : \mBbbN{}
2. \mexists{}a,b,c:\mBbbZ{}. (((a * a * a) + (b * b * b) + (c * c * c)) = k)
3. \mexists{}a,b,c:\mBbbZ{}. ((0 \mleq{} (a + b)) \mwedge{} (((a * a * a) + (b * b * b) + (c * c * c)) = k))
\mvdash{} \mexists{}c:\mBbbZ{}
(((c * c * c) = k)
\mvee{} (\mexists{}d:\mBbbN{}
((\mneg{}(d = 0))
\mwedge{} ((k - c * c * c rem d) = 0)
\mwedge{} (\mexists{}n:\mBbbN{}. (((4 * ((k - c * c * c) \mdiv{} d)) - d * d) = (3 * n * n))))))
By
Latex:
(Thin (-2) THEN ExRepD)
Home
Index