Step
*
1
2
of Lemma
triangular-num-add1
1. n : ℕ
2. ((n + 1) * ((n + 1) + 1)) = (((((n + 1) * ((n + 1) + 1)) ÷ 2) * 2) + 0) ∈ ℤ
3. (n * (n + 1)) = ((((n * (n + 1)) ÷ 2) * 2) + (n * (n + 1) rem 2)) ∈ ℤ
⊢ (((n + 1) * ((n + 1) + 1)) ÷ 2) = (((n * (n + 1)) ÷ 2) + n + 1) ∈ ℤ
BY
{ Subst ⌜n * (n + 1) rem 2 ~ 0⌝ (-1)⋅ }
1
.....equality.....
1. n : ℕ
2. ((n + 1) * ((n + 1) + 1)) = (((((n + 1) * ((n + 1) + 1)) ÷ 2) * 2) + 0) ∈ ℤ
3. (n * (n + 1)) = ((((n * (n + 1)) ÷ 2) * 2) + (n * (n + 1) rem 2)) ∈ ℤ
⊢ n * (n + 1) rem 2 ~ 0
2
1. n : ℕ
2. ((n + 1) * ((n + 1) + 1)) = (((((n + 1) * ((n + 1) + 1)) ÷ 2) * 2) + 0) ∈ ℤ
3. (n * (n + 1)) = ((((n * (n + 1)) ÷ 2) * 2) + 0) ∈ ℤ
⊢ (((n + 1) * ((n + 1) + 1)) ÷ 2) = (((n * (n + 1)) ÷ 2) + n + 1) ∈ ℤ
Latex:
Latex:
1. n : \mBbbN{}
2. ((n + 1) * ((n + 1) + 1)) = (((((n + 1) * ((n + 1) + 1)) \mdiv{} 2) * 2) + 0)
3. (n * (n + 1)) = ((((n * (n + 1)) \mdiv{} 2) * 2) + (n * (n + 1) rem 2))
\mvdash{} (((n + 1) * ((n + 1) + 1)) \mdiv{} 2) = (((n * (n + 1)) \mdiv{} 2) + n + 1)
By
Latex:
Subst \mkleeneopen{}n * (n + 1) rem 2 \msim{} 0\mkleeneclose{} (-1)\mcdot{}
Home
Index