Step
*
1
2
of Lemma
triangular-num-alt
1. k : ℕ@i
2. r : ℕ2@i
3. ¬(r = 0 ∈ ℤ)
⊢ ((((k * 2) + r) * (((k * 2) + r) + 1)) ÷ 2) = ((k + r) * ((2 * k) + 1)) ∈ ℤ
BY
{ ((Subst ⌜r ~ 1⌝ 0⋅ THEN Auto') THEN RW IntNormC 0 THEN Auto) }
1
1. k : ℕ@i
2. r : ℕ2@i
3. ¬(r = 0 ∈ ℤ)
⊢ ((2 + (6 * k) + (4 * k * k)) ÷ 2) = (1 + (3 * k) + (2 * k * k)) ∈ ℤ
Latex:
Latex:
1. k : \mBbbN{}@i
2. r : \mBbbN{}2@i
3. \mneg{}(r = 0)
\mvdash{} ((((k * 2) + r) * (((k * 2) + r) + 1)) \mdiv{} 2) = ((k + r) * ((2 * k) + 1))
By
Latex:
((Subst \mkleeneopen{}r \msim{} 1\mkleeneclose{} 0\mcdot{} THEN Auto') THEN RW IntNormC 0 THEN Auto)
Home
Index