Nuprl Lemma : add_ipoly_wf
∀[p,q:iPolynomial()].  (add_ipoly(p;q) ∈ iPolynomial())
Proof
Definitions occuring in Statement : 
add_ipoly: add_ipoly(p;q)
, 
iPolynomial: iPolynomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iPolynomial: iPolynomial()
Lemmas referenced : 
add_ipoly-sq, 
add-ipoly_wf, 
iPolynomial_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}[p,q:iPolynomial()].    (add\_ipoly(p;q)  \mmember{}  iPolynomial())
Date html generated:
2017_09_29-PM-05_53_08
Last ObjectModification:
2017_05_04-PM-03_23_28
Theory : omega
Home
Index