Nuprl Lemma : equiv_int_terms_transitivity

[t1,t2,t3:int_term()].  (t1 ≡ t3) supposing (t2 ≡ t3 and t1 ≡ t2)


Proof




Definitions occuring in Statement :  equiv_int_terms: t1 ≡ t2 int_term: int_term() uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equiv_int_terms: t1 ≡ t2 all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf int_term_value_wf iff_weakening_equal equiv_int_terms_wf int_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution lambdaFormation applyEquality thin lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality intEquality dependent_functionElimination functionExtensionality because_Cache natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination functionEquality axiomEquality isect_memberEquality

Latex:
\mforall{}[t1,t2,t3:int\_term()].    (t1  \mequiv{}  t3)  supposing  (t2  \mequiv{}  t3  and  t1  \mequiv{}  t2)



Date html generated: 2017_04_14-AM-08_57_29
Last ObjectModification: 2017_02_27-PM-03_40_46

Theory : omega


Home Index