Nuprl Lemma : exact-eq-constraint_wf
∀[eqs:ℤ List List]. ∀[i:ℕ||eqs||]. ∀[j:ℕ||eqs[i]||].  (exact-eq-constraint(eqs;i;j) ∈ ℙ)
Proof
Definitions occuring in Statement : 
exact-eq-constraint: exact-eq-constraint(eqs;i;j), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
exact-eq-constraint: exact-eq-constraint(eqs;i;j), 
uimplies: b supposing a, 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
squash: ↓T, 
subtype_rel: A ⊆r B
Lemmas referenced : 
list_wf, 
length_wf, 
int_seg_wf, 
sq_stable__le, 
select_wf, 
absval_wf, 
equal-wf-T-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[eqs:\mBbbZ{}  List  List].  \mforall{}[i:\mBbbN{}||eqs||].  \mforall{}[j:\mBbbN{}||eqs[i]||].    (exact-eq-constraint(eqs;i;j)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_12_02
Last ObjectModification:
2016_01_14-PM-08_40_28
Theory : omega
Home
Index