Nuprl Lemma : exact-eq-constraint_wf

[eqs:ℤ List List]. ∀[i:ℕ||eqs||]. ∀[j:ℕ||eqs[i]||].  (exact-eq-constraint(eqs;i;j) ∈ ℙ)


Proof




Definitions occuring in Statement :  exact-eq-constraint: exact-eq-constraint(eqs;i;j) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T exact-eq-constraint: exact-eq-constraint(eqs;i;j) uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T subtype_rel: A ⊆B
Lemmas referenced :  list_wf length_wf int_seg_wf sq_stable__le select_wf absval_wf equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache independent_isectElimination setElimination rename natural_numberEquality hypothesisEquality hypothesis independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[eqs:\mBbbZ{}  List  List].  \mforall{}[i:\mBbbN{}||eqs||].  \mforall{}[j:\mBbbN{}||eqs[i]||].    (exact-eq-constraint(eqs;i;j)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_12_02
Last ObjectModification: 2016_01_14-PM-08_40_28

Theory : omega


Home Index