Step
*
2
1
1
1
1
of Lemma
imonomial-cons
1. u : ℤ
2. v : ℤ List
3. ∀u,a:ℤ. ∀f:ℤ ⟶ ℤ. (int_term_value(f;imonomial-term(<a, [u / v]>)) = int_term_value(f;imonomial-term(<a * (f u), v>)\000C) ∈ ℤ)
4. u@0 : ℤ
5. a : ℤ
6. f : ℤ ⟶ ℤ
7. int_term_value(f;imonomial-term(<a * (f u@0), [u / v]>)) = int_term_value(f;imonomial-term(<(a * (f u@0)) * (f u), v>\000C)) ∈ ℤ
8. v1 : ℤ List
9. [u / v] = v1 ∈ (ℤ List)
⊢ int_term_value(f;imonomial-term(<a, [u@0 / v1]>)) = int_term_value(f;imonomial-term(<a * (f u@0), v1>)) ∈ ℤ
BY
{ RepUR ``imonomial-term`` 0 }
1
1. u : ℤ
2. v : ℤ List
3. ∀u,a:ℤ. ∀f:ℤ ⟶ ℤ. (int_term_value(f;imonomial-term(<a, [u / v]>)) = int_term_value(f;imonomial-term(<a * (f u), v>)\000C) ∈ ℤ)
4. u@0 : ℤ
5. a : ℤ
6. f : ℤ ⟶ ℤ
7. int_term_value(f;imonomial-term(<a * (f u@0), [u / v]>)) = int_term_value(f;imonomial-term(<(a * (f u@0)) * (f u), v>\000C)) ∈ ℤ
8. v1 : ℤ List
9. [u / v] = v1 ∈ (ℤ List)
⊢ int_term_value(f;accumulate (with value t and list item v):
t (*) vv
over list:
v1
with starting value:
"a" (*) vu@0))
= int_term_value(f;accumulate (with value t and list item v):
t (*) vv
over list:
v1
with starting value:
"a * (f u@0)"))
∈ ℤ
Latex:
Latex:
1. u : \mBbbZ{}
2. v : \mBbbZ{} List
3. \mforall{}u,a:\mBbbZ{}. \mforall{}f:\mBbbZ{} {}\mrightarrow{} \mBbbZ{}. (int\_term\_value(f;imonomial-term(<a, [u / v]>)) = int\_term\_value(f;imonomial-\000Cterm(<a * (f u), v>)))
4. u@0 : \mBbbZ{}
5. a : \mBbbZ{}
6. f : \mBbbZ{} {}\mrightarrow{} \mBbbZ{}
7. int\_term\_value(f;imonomial-term(<a * (f u@0), [u / v]>)) = int\_term\_value(f;imonomial-term(<(a * \000C(f u@0)) * (f u), v>))
8. v1 : \mBbbZ{} List
9. [u / v] = v1
\mvdash{} int\_term\_value(f;imonomial-term(<a, [u@0 / v1]>)) = int\_term\_value(f;imonomial-term(<a * (f u@0), \000Cv1>))
By
Latex:
RepUR ``imonomial-term`` 0
Home
Index