Nuprl Lemma : imonomial-term_wf

[m:ℤ × (ℤ List)]. (imonomial-term(m) ∈ int_term())


Proof




Definitions occuring in Statement :  imonomial-term: imonomial-term(m) int_term: int_term() list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imonomial-term: imonomial-term(m) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf int_term_wf itermConstant_wf itermMultiply_wf itermVar_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry productEquality

Latex:
\mforall{}[m:\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List)].  (imonomial-term(m)  \mmember{}  int\_term())



Date html generated: 2016_05_14-AM-07_00_35
Last ObjectModification: 2015_12_26-PM-01_12_00

Theory : omega


Home Index