Nuprl Lemma : imonomial-term_wf
∀[m:ℤ × (ℤ List)]. (imonomial-term(m) ∈ int_term())
Proof
Definitions occuring in Statement : 
imonomial-term: imonomial-term(m)
, 
int_term: int_term()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imonomial-term: imonomial-term(m)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
int_term_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality
Latex:
\mforall{}[m:\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List)].  (imonomial-term(m)  \mmember{}  int\_term())
Date html generated:
2016_05_14-AM-07_00_35
Last ObjectModification:
2015_12_26-PM-01_12_00
Theory : omega
Home
Index