Nuprl Lemma : int-vec-mul-mul

[a,b:ℤ]. ∀[as:ℤ List].  (a as as)


Proof




Definitions occuring in Statement :  int-vec-mul: as list: List uall: [x:A]. B[x] multiply: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int-vec-mul: as top: Top compose: g sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B true: True squash: T prop:
Lemmas referenced :  true_wf squash_wf map_wf mul-associates map-map int_subtype_base list_subtype_base list_wf subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality hypothesis independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom because_Cache hypothesisEquality functionExtensionality applyEquality lambdaEquality multiplyEquality natural_numberEquality imageElimination functionEquality universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (a  *  b  *  as  \msim{}  a  *  b  *  as)



Date html generated: 2016_05_14-AM-06_56_29
Last ObjectModification: 2016_01_14-PM-08_44_32

Theory : omega


Home Index