Nuprl Lemma : int_formula-definition

[A:Type]. ∀[R:A ⟶ int_formula() ⟶ ℙ].
  ((∀left,right:int_term().  {x:A| R[x;(left "<right)]} )
   (∀left,right:int_term().  {x:A| R[x;left "≤right]} )
   (∀left,right:int_term().  {x:A| R[x;left "=" right]} )
   (∀left,right:int_formula().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;left "∧right]} ))
   (∀left,right:int_formula().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;left "or" right]} ))
   (∀left,right:int_formula().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;left "=>right]} ))
   (∀form:int_formula(). ({x:A| R[x;form]}   {x:A| R[x;"¬"form]} ))
   {∀v:int_formula(). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  intformnot: "form intformimplies: left "=>right intformor: left "or" right intformand: left "∧right intformeq: left "=" right intformle: left "≤right intformless: (left "<right) int_formula: int_formula() int_term: int_term() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] prop:
Lemmas referenced :  int_formula-induction set_wf int_formula_wf all_wf intformnot_wf intformimplies_wf intformor_wf intformand_wf int_term_wf intformeq_wf intformle_wf intformless_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesis sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesisEquality applyEquality because_Cache independent_functionElimination functionEquality universeEquality cumulativity

Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  int\_formula()  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}left,right:int\_term().    \{x:A|  R[x;(left  "<"  right)]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    \{x:A|  R[x;left  "\mleq{}"  right]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    \{x:A|  R[x;left  "="  right]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "\mwedge{}"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "or"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;left  "=>"  right]\}  ))
    {}\mRightarrow{}  (\mforall{}form:int\_formula().  (\{x:A|  R[x;form]\}    {}\mRightarrow{}  \{x:A|  R[x;"\mneg{}"form]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:int\_formula().  \{x:A|  R[x;v]\}  \})



Date html generated: 2016_05_14-AM-07_07_02
Last ObjectModification: 2015_12_26-PM-01_09_03

Theory : omega


Home Index