Nuprl Lemma : int_formula-induction
∀[P:int_formula() ⟶ ℙ]
  ((∀left,right:int_term().  P[(left "<" right)])
  
⇒ (∀left,right:int_term().  P[left "≤" right])
  
⇒ (∀left,right:int_term().  P[left "=" right])
  
⇒ (∀left,right:int_formula().  (P[left] 
⇒ P[right] 
⇒ P[left "∧" right]))
  
⇒ (∀left,right:int_formula().  (P[left] 
⇒ P[right] 
⇒ P[left "or" right]))
  
⇒ (∀left,right:int_formula().  (P[left] 
⇒ P[right] 
⇒ P[left "=>" right]))
  
⇒ (∀form:int_formula(). (P[form] 
⇒ P["¬"form]))
  
⇒ {∀v:int_formula(). P[v]})
Proof
Definitions occuring in Statement : 
intformnot: "¬"form
, 
intformimplies: left "=>" right
, 
intformor: left "or" right
, 
intformand: left "∧" right
, 
intformeq: left "=" right
, 
intformle: left "≤" right
, 
intformless: (left "<" right)
, 
int_formula: int_formula()
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
ext-eq: A ≡ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
intformless: (left "<" right)
, 
int_formula_size: int_formula_size(p)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
intformle: left "≤" right
, 
intformeq: left "=" right
, 
intformand: left "∧" right
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
intformor: left "or" right
, 
intformimplies: left "=>" right
, 
intformnot: "¬"form
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
uniform-comp-nat-induction, 
all_wf, 
int_formula_wf, 
isect_wf, 
le_wf, 
int_formula_size_wf, 
nat_wf, 
less_than'_wf, 
int_formula-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
set_subtype_base, 
int_subtype_base, 
add-is-int-iff, 
nat_properties, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
lelt_wf, 
uall_wf, 
int_seg_wf, 
le_reflexive, 
intformnot_wf, 
intformimplies_wf, 
intformor_wf, 
intformand_wf, 
int_term_wf, 
intformeq_wf, 
intformle_wf, 
intformless_wf, 
one-mul, 
two-mul, 
mul-distributes-right, 
omega-shadow, 
less_than_wf, 
mul-distributes, 
mul-commutes, 
mul-associates, 
mul-swap, 
minus-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
functionExtensionality, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
tokenEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_pairFormation, 
independent_pairFormation, 
sqequalIntensionalEquality, 
intEquality, 
natural_numberEquality, 
baseClosed, 
baseApply, 
closedConclusion, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
functionEquality, 
universeEquality, 
multiplyEquality, 
imageMemberEquality
Latex:
\mforall{}[P:int\_formula()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}left,right:int\_term().    P[(left  "<"  right)])
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    P[left  "\mleq{}"  right])
    {}\mRightarrow{}  (\mforall{}left,right:int\_term().    P[left  "="  right])
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  "\mwedge{}"  right]))
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  "or"  right]))
    {}\mRightarrow{}  (\mforall{}left,right:int\_formula().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  "=>"  right]))
    {}\mRightarrow{}  (\mforall{}form:int\_formula().  (P[form]  {}\mRightarrow{}  P["\mneg{}"form]))
    {}\mRightarrow{}  \{\mforall{}v:int\_formula().  P[v]\})
Date html generated:
2017_04_14-AM-09_01_50
Last ObjectModification:
2017_02_27-PM-03_44_24
Theory : omega
Home
Index