Nuprl Lemma : int_formula_size_wf

[p:int_formula()]. (int_formula_size(p) ∈ ℕ)


Proof




Definitions occuring in Statement :  int_formula_size: int_formula_size(p) int_formula: int_formula() nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_formula_size: int_formula_size(p) int_formulaco_size: int_formulaco_size(p) int_formula: int_formula() uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  termination nat_wf set-value-type le_wf int-value-type int_formulaco_size_wf int_formula_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesis independent_isectElimination intEquality lambdaEquality natural_numberEquality hypothesisEquality

Latex:
\mforall{}[p:int\_formula()].  (int\_formula\_size(p)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-07_04_26
Last ObjectModification: 2015_12_26-PM-01_10_41

Theory : omega


Home Index