Nuprl Lemma : termination
∀[T:Type]. ∀[x:partial(T)]. x ∈ T supposing (x)↓ supposing value-type(T)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
partial: partial(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
label: ...$L... t
, 
guard: {T}
, 
true: True
, 
per-partial: per-partial(T;x;y)
Lemmas referenced : 
partial_wf, 
value-type_wf, 
istype-universe, 
base-partial_wf, 
per-partial_wf, 
has-value-extensionality, 
has-value_wf-partial, 
has-value_wf_base, 
member_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
Error :universeIsType, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
universeEquality, 
pointwiseFunctionalityForEquality, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
productElimination, 
Error :productIsType, 
Error :equalityIstype, 
sqequalBase, 
equalitySymmetry, 
because_Cache, 
isectEquality, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
hyp_replacement, 
Error :dependent_set_memberEquality_alt, 
equalityTransitivity, 
Error :inhabitedIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
Error :isect_memberEquality_alt, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:partial(T)].  x  \mmember{}  T  supposing  (x)\mdownarrow{}  supposing  value-type(T)
Date html generated:
2019_06_20-PM-00_33_55
Last ObjectModification:
2018_11_29-PM-04_06_06
Theory : partial_1
Home
Index