Nuprl Lemma : termination

[T:Type]. ∀[x:partial(T)]. x ∈ supposing (x)↓ supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T partial: partial(T) quotient: x,y:A//B[x; y] and: P ∧ Q prop: iff: ⇐⇒ Q implies:  Q rev_implies:  Q squash: T label: ...$L... t guard: {T} true: True per-partial: per-partial(T;x;y)
Lemmas referenced :  partial_wf value-type_wf istype-universe base-partial_wf per-partial_wf has-value-extensionality has-value_wf-partial has-value_wf_base member_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction Error :universeIsType,  cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate universeEquality pointwiseFunctionalityForEquality sqequalRule pertypeElimination promote_hyp productElimination Error :productIsType,  Error :equalityIstype,  sqequalBase equalitySymmetry because_Cache isectEquality independent_isectElimination independent_pairFormation Error :lambdaFormation_alt,  hyp_replacement Error :dependent_set_memberEquality_alt,  equalityTransitivity Error :inhabitedIsType,  applyLambdaEquality setElimination rename applyEquality Error :lambdaEquality_alt,  imageElimination natural_numberEquality imageMemberEquality baseClosed Error :isect_memberEquality_alt,  axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:partial(T)].  x  \mmember{}  T  supposing  (x)\mdownarrow{}  supposing  value-type(T)



Date html generated: 2019_06_20-PM-00_33_55
Last ObjectModification: 2018_11_29-PM-04_06_06

Theory : partial_1


Home Index